Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612705

RESUMO

The advent of Surface-Enhanced Raman Scattering (SERS) has enabled the exploration and detection of small molecules, particularly in biological fluids such as serum, blood plasma, urine, saliva, and tears. SERS has been proposed as a simple diagnostic technique for various diseases, including cancer. Renal cell carcinoma (RCC) ranks as the sixth most commonly diagnosed cancer in men and is often asymptomatic, with detection occurring incidentally. The onset of symptoms typically aligns with advanced disease, aggressive histology, and unfavorable prognosis, and therefore new methods for an early diagnosis are needed. In this study, we investigated the utility of label-free SERS in urine, coupled with two multivariate analysis approaches: Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) and Support Vector Machine (SVM), to discriminate between 50 RCC patients and 44 healthy donors. Employing LDA-PCA, we achieved a discrimination accuracy of 100% using 13 principal components, and an 88% accuracy in discriminating between different RCC stages. The SVM approach yielded a training accuracy of 100%, a validation accuracy of 99% for discriminating between RCC and controls, and an 80% accuracy for discriminating between stages. The comparative analysis of raw and normalized SERS spectral data shows that while raw data disclose relative concentration variations in urine metabolites between the two classes, the normalization of spectral data significantly improves the accuracy of discrimination. Moreover, the selection of principal components with markedly distinct scores between the two classes serves to alleviate overfitting risks and reduces the number of components employed for discrimination. We obtained the accuracy of the discrimination between the RCC patients cases and healthy donors of 90% for three PCs and a linear discrimination function, and a 88% accuracy of discrimination between stages using six PCs, mitigating practically the risk of overfitting and increasing the robustness of our analysis. Our findings underscore the potential of label-free SERS of urine in conjunction with chemometrics for non-invasive and early RCC detection.


Assuntos
Líquidos Corporais , Carcinoma de Células Renais , Neoplasias Renais , Masculino , Humanos , Carcinoma de Células Renais/diagnóstico , Análise Multivariada , Aprendizado de Máquina , Neoplasias Renais/diagnóstico
2.
Pharmaceutics ; 16(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38399317

RESUMO

In recent years, nanomedicine has experienced remarkable advancements, due to the development of new nanomaterials with outstanding properties that have demonstrated significant advantages over traditional medicines [...].

3.
Biosensors (Basel) ; 13(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622899

RESUMO

Renal cell carcinoma (RCC) represents the sixth most frequently diagnosed cancer in men and is asymptomatic, being detected mostly incidentally. The apparition of symptoms correlates with advanced disease, aggressive histology, and poor outcomes. The development of the Surface-Enhanced Raman Scattering (SERS) technique opened the way for investigating and detecting small molecules, especially in biological liquids such as serum or blood plasma, urine, saliva, and tears, and was proposed as a simple technique for the diagnosis of various diseases, including cancer. In this study, we investigated the use of serum label-free SERS combined with two multivariate analysis tests: Principal Component Analysis combined with Linear Discriminate Analysis (PCA-LDA) and Supported Vector Machine (SVM) for the discrimination of 50 RCC cancer patients from 45 apparently healthy donors. In the case of LDA-PCA, we obtained a discrimination accuracy of 100% using 12 principal components and a quadratic discrimination function. The accuracy of discrimination between RCC stages was 88%. In the case of the SVM approach, we obtained a training accuracy of 100%, a validation accuracy of 92% for the discrimination between RCC and controls, and an accuracy of 81% for the discrimination between stages. We also performed standard statistical tests aimed at improving the assignment of the SERS vibration bands, which, according to our data, are mainly due to purinic metabolites (uric acid and hypoxanthine). Moreover, our results using these assignments and Student's t-test suggest that the main differences in the SERS spectra of RCC patients are due to an increase in the uric acid concentration (a conclusion in agreement with recent literature), while the hypoxanthine concentration is not statistically different between the two groups. Our results demonstrate that label-free SERS combined with chemometrics holds great promise for non-invasive and early detection of RCC. However, more studies are needed to validate this approach, especially when combined with other urological diseases.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Humanos , Carcinoma de Células Renais/diagnóstico , Soro , Ácido Úrico , Hipoxantina , Análise Multivariada , Neoplasias Renais/diagnóstico
4.
Pharmaceutics ; 14(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432692

RESUMO

The combination of magnetic hyperthermia with chemotherapy is considered a promising strategy in cancer therapy due to the synergy between the high temperatures and the chemotherapeutic effects, which can be further developed for targeted and remote-controlled drug release. In this paper we report a simple, rapid, and reproducible method for the preparation of thermosensitive magnetoliposomes (TsMLs) loaded with doxorubicin (DOX), consisting of a lipidic gel formation from a previously obtained water-in-oil microemulsion with fine aqueous droplets containing magnetic nanoparticles (MNPs) dispersed in an organic solution of thermosensitive lipids (transition temperature of ~43 °C), followed by the gel hydration with an aqueous solution of DOX. The obtained thermosensitive magnetoliposomes (TsMLs) were around 300 nm in diameter and exhibited 40% DOX incorporation efficiency. The most suitable MNPs to incorporate into the liposomal aqueous lumen were Zn ferrites, with a very low coercive field at 300 K (7 kA/m) close to the superparamagnetic regime, exhibiting a maximum absorption rate (SAR) of 1130 W/gFe when dispersed in water and 635 W/gFe when confined inside TsMLs. No toxicity of Zn ferrite MNPs or of TsMLs was noticed against the A459 cancer cell line after 48 h incubation over the tested concentration range. The passive release of DOX from the TsMLs after 48h incubation induced a toxicity starting with a dosage level of 62.5 ug/cm2. Below this threshold, the subsequent exposure to an alternating magnetic field (20-30 kA/m, 355 kHz) for 30 min drastically reduced the viability of the A459 cells due to the release of incorporated DOX. Our results strongly suggest that TsMLs represent a viable strategy for anticancer therapies using the magnetic field-controlled release of DOX.

5.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296768

RESUMO

The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.

6.
Biomedicines ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884954

RESUMO

The applications of ferrimagnetic nanoparticles (F-MNPs) in magnetic hyperthermia (MH) are restricted by their stabilization in microscale aggregates due to magnetostatic interactions significantly reducing their heating performances. Coating the F-MNPs in a silica layer is expected to significantly reduce the magnetostatic interactions, thereby increasing their heating ability. A new fast, facile, and eco-friendly oil-in-water microemulsion-based method was used for coating Zn0.4Fe2.6O4 F-MNPs in a silica layer within 30 min by using ultrasounds. The silica-coated clusters were characterized by various physicochemical techniques and MH, while cytotoxicity studies, cellular uptake determination, and in vitro MH experiments were performed on normal and malignant cell lines. The average hydrodynamic diameter of silica-coated clusters was approximately 145 nm, displaying a high heating performance (up to 2600 W/gFe). Biocompatibility up to 250 µg/cm2 (0.8 mg/mL) was recorded by Alamar Blue and Neutral Red assays. The silica-coating increases the cellular uptake of Zn0.4Fe2.6O4 clusters up to three times and significantly improves their intracellular MH performances. A 90% drop in cellular viability was recorded after 30 min of MH treatment (20 kA/m, 355 kHz) for a dosage level of 62.5 µg/cm2 (0.2 mg/mL), while normal cells were more resilient to MH treatment.

7.
Pharmaceutics ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959308

RESUMO

Increasing the biocompatibility, cellular uptake, and magnetic heating performance of ferromagnetic iron-oxide magnetic nanoparticles (F-MNPs) is clearly required to efficiently induce apoptosis of cancer cells by magnetic hyperthermia (MH). Thus, F-MNPs were coated with silica layers of different thicknesses via a reverse microemulsion method, and their morphological, structural, and magnetic properties were evaluated by multiple techniques. The presence of a SiO2 layer significantly increased the colloidal stability of F-MNPs, which also enhanced their heating performance in water with almost 1000 W/gFe as compared to bare F-MNPs. The silica-coated F-MNPs exhibited biocompatibility of up to 250 µg/cm2 as assessed by Alamar Blues and Neutral Red assays on two cancer cell lines and one normal cell line. The cancer cells were found to internalize a higher quantity of silica-coated F-MNPs, in large endosomes, dispersed in the cytoplasm or inside lysosomes, and hence were more sensitive to in vitro MH treatment compared to the normal ones. Cellular death of more than 50% of the malignant cells was reached starting at a dose of 31.25 µg/cm2 and an amplitude of alternating magnetic field of 30 kA/m at 355 kHz.

8.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959431

RESUMO

The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs' hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 µg/cm2). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 µg/cm2. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells.

9.
Pharmaceutics ; 13(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34683849

RESUMO

BACKGROUND: Cytochrome c (Cyt c) is a key biomarker for early apoptosis, and many methods were designed to detect its release from mitochondria. For a proper evaluation of these programed cell death mechanisms, fluorescent nanoparticles are excellent candidates due to their valuable optical properties. Among all classes of nanoparticles developed thus far, carbon-based quantum dots bring qualitative and efficient imaging strategies for biomedical applications as a consequence of their biocompatibility and low cytotoxicity. METHODS: In this study, we synthesized carbon quantum dots smaller than 5 nm from sodium citrate and polyethylene imine. These nanoparticles were rigorously characterized, and their quenching capacity in apoptotic events was assessed in A549 cells treated with staurosporine and etoposide. For the evaluation of Cyt c release, a phenomenon directly correlated with apoptotic events, we ran a semiquantitative analysis using confocal laser scanning microscopy. RESULTS: Carbon quantum dots were synthesized and were successfully employed for Cyt c detection by means of fluorescence microscopy. Significant drops in fluorescence intensity were observed in the case of cells treated with apoptosis-inducing therapeutic compounds compared to untreated cells, confirming Cyt c release from mitochondria to cytosol. CONCLUSION: Considering these results, we strongly believe this method can contribute to an indirect in vitro evaluation of apoptosis.

10.
Pharmaceutics ; 13(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34683887

RESUMO

Chiral separation is an important issue for the pharmaceutical industry. Over the years, several separation methods have been developed, mainly based on chromatography. Their working principle is based on the formation of transient diastereoisomers, but the very subtle nanoscale interactions responsible for separation are not always understood. Recently, Raman and surface-enhanced Raman (SERS) spectroscopy have provided promising results in this field. Here we present Raman/SERS experimental data that provide useful information concerning the nanoscale interactions between propranolol enantiomers and α, ß, and γ cyclodextrins. Raman spectroscopy was used to prove the formation of host-guest intermolecular complexes having different geometries of interaction. The occurrence of new vibrational bands and a change in the intensities of others are direct proofs of complexes' formation. These observations were confirmed by DFT calculations. By performing SERS measurements on a new type of plasmonic substrate, we were able to prove the intermolecular interactions responsible for PRNL discrimination. It turned out that the interaction strength between the substrate and the intermolecular complexes is of paramount importance for SERS-based chiral discrimination. This approach could represent a very good starting point for the evaluation of molecular interactions manifesting between other pharmaceutical compounds and different classes of chiral selectors.

11.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096631

RESUMO

Superparamagnetic ZnxFe3-xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field's effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter.


Assuntos
Nanopartículas Metálicas/química , Zinco/química , Ácido Cítrico/química , Óxido Ferroso-Férrico/química , Hipertermia Induzida/métodos , Campos Magnéticos , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
12.
Nanomaterials (Basel) ; 10(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575924

RESUMO

Surface enhanced Raman spectroscopy (SERS) represents a promising technique in providing specific molecular information that could have a major impact in biomedical applications, such as early cancer detection. SERS requires the presence of a suitable plasmonic substrate that can generate enhanced and reproducible diagnostic relevant spectra. In this paper, we propose a new approach for the synthesis of such a substrate, by using concentrated silver nanoparticles purified using the Tangential Flow Filtration method. The capacity of our substrates to generate reproducible and enhanced Raman signals, in a manner that can allow cancer detection by means of Multivariate Analysis (MVA) of Surface Enhanced Raman (SER) spectra, has been tested on blood plasma samples collected from 35 healthy donors and 29 breast cancer patients. All the spectra were analyzed by a combined Principal Component-Linear Discriminant Analysis. Our results facilitated the discrimination between healthy donors and breast cancer patients with 90% sensitivity, 89% specificity and 89% accuracy. This is a direct consequence of substrates' ability to generate diagnostic relevant spectral information by performing SERS measurements on pristine blood plasma samples. Our results suggest that this type of solid substrate could be employed for the detection of other types of cancer or other diseases by means of MVA-SERS procedure.

13.
Pharmaceutics ; 12(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384665

RESUMO

We report the synthesis of magnetite nanoparticles (IOMNPs) using the polyol method performed at elevated temperature (300 °C) and high pressure. The ferromagnetic polyhedral IOMNPs exhibited high saturation magnetizations at room temperature (83 emu/g) and a maximum specific absorption rate (SAR) of 2400 W/gFe in water. The uniform dispersion of IOMNPs in solid matrix led to a monotonous increase of SAR maximum (3600 W/gFe) as the concentration decreased. Cytotoxicity studies on two cell lines (cancer and normal) using Alamar Blues and Neutral Red assays revealed insignificant toxicity of the IOMNPs on the cells up to a concentration of 1000 µg/mL. The cells internalized the IOMNPs inside lysosomes in a dose-dependent manner, with higher amounts of IOMNPs in cancer cells. Intracellular hyperthermia experiments revealed a significant increase in the macroscopic temperatures of the IOMNPs loaded cell suspensions, which depend on the amount of internalized IOMNPs and the alternating magnetic field amplitude. The cancer cells were found to be more sensitive to the intracellular hyperthermia compared to the normal ones. For both cell lines, cells heated at the same macroscopic temperature presented lower viability at higher amplitudes of the alternating magnetic field, indicating the occurrence of mechanical or nanoscale heating effects.

14.
Nanomaterials (Basel) ; 9(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731719

RESUMO

By carefully controlling the electrostatic interactions between cationic liposomes, which already incorporate magnetic nanoparticles in the bilayers, and anionic gold nanoparticles, a new class of versatile multifunctional nanohybrids (plasmonic magneto-liposomes) that could have a major impact in drug delivery and controlled release applications has been synthesized. The experimental results confirmed the successful synthesis of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) and polyethylene glycol functionalized (PEGylated) gold nanoparticles (AuNPs). The SPIONs were incorporated in the liposomal lipidic bilayers, thus promoting the formation of cationic magnetoliposomes. Different concentrations of SPIONs were loaded in the membrane. The cationic magnetoliposomes were decorated with anionic PEGylated gold nanoparticles using electrostatic interactions. The successful incorporation of SPIONs together with the modifications they generate in the bilayer were analyzed using Raman spectroscopy. The plasmonic properties of the multifunctional nanohybrids were investigated using UV-Vis absorption and (surface-enhanced) Raman spectroscopy. Their hyperthermic properties were recorded at different frequencies and magnetic field intensities. After the synthesis, the nanosystems were extensively characterized in order to properly evaluate their potential use in drug delivery applications and controlled release as a result of the interaction with an external stimulus, such as an NIR laser or alternating magnetic field.

15.
Nanomaterials (Basel) ; 9(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635415

RESUMO

Manganese and zinc ferrite magnetic nanoparticles (MNPs) were successfully synthesizedusing the polyol method in ethylene glycol and were found to have high saturation magnetizationvalues (90-95 emu/g at 4 K) when formed by ~30-nm crystallites assembled in an ~80-nm multicorestructure. Hyperthermia data revealed a sigmoidal dependence of the specific absorption rate (SAR)on the alternating magnetic field (AMF) amplitude, with remarkable saturation SAR values in waterof ~1200 W/gFe+Mn and ~800 W/gFe+Zn for the Mn and Zn ferrites, respectively. The immobilizationof the MNPs in a solid matrix reduced the maximum SAR values by ~300 W/gFe+Mn, Zn for bothferrites. The alignment of the MNPs in a uniform static magnetic field, before their immobilizationin a solid matrix, significantly increased their heating performance. Toxicity assays performed infour cell lines revealed a lower toxicity for the Mn ferrites, while in the case of the Zn ferrites, only~50% of cells were viable upon their incubation for 24 h with 0.2 mg/mL of MNPs. Cellular uptakeexperiments revealed that both MNPs entered the cells in a time-dependent manner, as they werefound initially in endosomes and later in the cytosol. All of the studied cell lines were more sensitiveto the ZnFe2O4 MNPs.

16.
Int J Nanomedicine ; 13: 1041-1058, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503540

RESUMO

PURPOSE: The leaves and flowering stem of Origanum vulgare contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, O. vulgare extract (OVE) mediated green synthesis method of biocompatible gold nanoparticles (AuNPs) possessing improved antioxidant, antimicrobial and plasmonic properties. MATERIALS AND METHODS: Different concentrations of OVEs were used to reduce gold ions and to synthetize biocompatible spherical AuNPs. Their morphology and physical properties have been investigated by means of transmission electron microscopy, ultraviolet-visible absorption spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy, whereas their plasmonic properties have been tested using surface-enhanced Raman spectroscopy (SERS). The antioxidant properties of nanoparticles (NPs) have been evaluated by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, and the antimicrobial tests were performed using the disk diffusion assay. Their cytotoxicity has been assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS: The experimental results confirmed the successful synthesis of biocompatible, spherical, plasmonic NPs having a mean diameter of ~40 nm and an outstanding aqueous stability. This new class of NPs exhibits a very good antioxidant activity and presents interesting inhibitory effects against Staphylococcus aureus and Candida albicans. Due to their plasmonic properties, AuNPs are used as SERS substrates for the detection of a test molecule (methylene blue) up to a concentration of 10-7 M and a pharmaceutical compound (propranolol) in solution. Cytotoxicity assays revealed that AuNPs are better tolerated by normal human dermal fibroblast cells, while the melanoma cancer cells are more sensitive. CONCLUSION: The biocompatible AuNPs synthetized using OVEs showed significant bactericidal and antimycotic activities, the most sensitive microorganisms being S. aureus and C. albicans, both commonly involved in various dermatological infections. Moreover, the significant antioxidant effect might recommend their use for protective and/or preventive effect in various skin inflammatory conditions, including the reduction in side effects in dermatological infections. Meanwhile, the as-synthesized biocompatible AuNPs can be successfully used as SERS substrates for the detection of pharmaceutical compounds in aqueous solutions.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Materiais Biocompatíveis/farmacologia , Ouro/química , Química Verde/métodos , Nanopartículas Metálicas/química , Origanum/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sequestradores de Radicais Livres/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/análise , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Fatores de Tempo
17.
Molecules ; 21(10)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27754394

RESUMO

Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe3O4-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.


Assuntos
Compostos Férricos/farmacocinética , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Tamanho da Partícula , Adsorção , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Etilenoglicol/química , Compostos Férricos/química , Humanos , Campos Magnéticos , Camundongos , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...